Home

Site Map

Departments

What is Progressive Engineer?

Advertising, Directory Listing, and Job Posting Information

Engineering Resources and Weblinks

Engineering Firm Directory - Find a Firm

How Engineering
Firms Operate

Sustainability Firm
Directory

Back Issues

Engineering Schools

Online Engineering Education Programs

Tom Gibson's Consulting Services and Green Building Technologies Portfolio

Design Synergies Green Building Partnership

Can We Write an
Article About You?

Feature

Brie Van Dam:
Deep in Alaska, she endures – and even relishes – harsh conditions to research global warming

Feature

Virginia Smart Road:
In the countryside near Virginia Tech, a cutting-edge highway serves as a testing ground for vehicle technology.

Feature

Doug Neidich:
First, he makes his mark developing high-speed electronic connectors, then he becomes a sustainable developer. Oh, and he also started a company to commercialize thin-film solar photovoltaics. He's busy.

Brie Van Dam

Deep in Alaska, she endures – and even relishes – harsh conditions to research global warming

Cold, white wilderness surrounds Toolik Field Station, a world-renowned Arctic research outpost deep in Alaska’s interior. It’s a cloudy March afternoon with a wind chill of -20F as Brie Van Dam treks up a mountain that overlooks the station. In some directions, it’s hard to tell where the ground ends and the sky begins. In others, frosted ridgelines jag across the horizon. The only signs of civilization are the distant camp buildings and the single road that cuts a dirty path through the snow. The closest villages along it are two hours away.

 

 

Van Dam is in the midst of a five-hour excursion – most of it on snowshoes – to document the ground cover at a plot near the top. Tiny icicles crystallize on her lashes. Condensation from her breath solidifies on her scarf. While she has weathered lower temperatures, she knows not to stay still for too long; that’s when the chill can get dangerous.

Harsh and frozen. The Arctic’s been this way for most of the past 55 million winters, including the most recent 10,000 during which humans have flourished and multiplied to seven billion, enabled by Earth’s modern climate. The region’s store of ice, both on sea and land, stabilizes the planet’s temperatures in a host of important ways. You might think of it as the mortar in the foundation of the climate as we know it.

Brie Van Dam

But the foundation is cracking. The Arctic is warming faster than any other place on Earth. Not only is it heating up more rapidly, the pace of change is speeding up. Melting ice is melting more ice and touching off tangent cascades along the way. Permafrost is thawing and freeing more greenhouse gases. As the northern waters warm, climate-regulating currents in the ocean and air are slowing. All while the seas are rising. The consequences of Arctic warming are rippling across the globe, and they’re on track to keep escalating exponentially.

“It’s easy sometimes as a scientist to look at things through the science lens of, ‘Oh, wow, what a cool time to study the Arctic because the Arctic is changing so fast right now,’” says Van Dam, who manages the station’s Environmental Data Center. “But when you look at that through more of a human lens, it becomes terrifying.”

Van Dam faces these facts every day in her work documenting climate change from its epicenter, year-round. She finds herself in this position after receiving her Bachelor of Science in Engineering in Atmospheric, Oceanic and Space Sciences from the University of Michigan in 2007 (the department has since changed its name to Climate and Space Sciences and Engineering). She’s a member of the skeleton crew that stays at the station through the coldest months. The winter yields pivotal insights, and the most recent was the warmest in recorded history.

In the snowpack samples she gathers, in the wing prints of the local birds and even in the patterns the wind makes on the powder, the snow, Van Dam says, tells stories. She is paying close attention. Pixel-by pixel, her monitoring work is helping to paint a climate picture that you have to stand way back to see.

Scientist and steward
Van Dam has been connected to the snow for much of her life. As a child, she and her brother built igloos in Michigan winters. As a doctoral student at the University of Colorado at Boulder, she studied how sunlight reacts with pollutants in the spaces between fallen snowflakes.

She first set foot in the Arctic while she was an undergrad at the University of Michigan. She spent a summer in Alaska’s wilderness through an outdoor education program. During that trip, she helped rescue a fellow student from a glacial crevasse, and she fell in love with the far north. She connected with its raw nature, its dangers accompanied by stark beauty and otherworldly light. “I did really fall in love with the landscape,” she says. “Love is a verb, right? It’s something that we do, and so loving the landscape, for me, means really being a part of the environment on a personal level.”

Brie Van Dam treks up Jade Mountain on a research expedition. The remote Toolik Field Station is visible in the distance in front of the Brooks Range.

In addition to her role as a scientist, Van Dam is a steward of the world around her. When she’s not at the field station, she lives in a cabin in Fairbanks that has no running water. Such setups are common in interior Alaska because the frozen ground is difficult to plumb through. She gets her water for drinking and washing dishes and clothes by refilling giant jugs in town once a week. The outhouse is out back and, in Van Dam’s case, the shower’s at work in her local office. While it’s not the most convenient approach, it’s easy to conserve when you don’t have a tap.

Van Dam’s freezer is stocked with the meat of a caribou she killed in the Brooks Range. She and a hunting partner skinned it, quartered it and hauled it home on a sled. “I showed up to my Fairbanks office still smelling of caribou blood,” she recalls.

That animal, and wild salmon caught by a friend, will provide her protein for most of the next year. Industrial meat production is a major carbon emitter, and as much as she can, Van Dam opts out of that cycle. “The idea that our species – that really, my actions and choices – are having an irreversible impact on the planet kind of blows my mind sometimes,” she says.

Brie Van Dam at work in her Fairbanks office with Clyde and Vilde,
her rescued, retired sled dogs.

Back on the mountain overlooking Toolik Field Station, which is funded by the National Science Foundation and part of the University of Alaska Fairbanks Institute of Arctic Biology, she stops at the top in sub-zero temperatures to gather data. About once a month, she takes pictures of landscape conditions at several plots for researchers studying two tundra plant species. They’re documenting how climate change is affecting the global range of a particular moss and an alpine herb.

She could take a snowmobile the two miles to the base and back, but she prefers to cross-country ski or snowshoe, knowing that the only carbon dioxide she adds to the atmosphere comes from her own breath. It’s a long journey for a set of photographs but an important one.

Winter is the station’s sparsest season. Although more than 100 projects are typically underway at any given time, almost none of the researchers involved are able to get there for regular observations. So Van Dam stands in, looking in the nooks and crannies for small signs of the bigger changes afoot. She’s a crucial set of eyes.

The Arctic is a place of extremes and opposites – frozen but melting, vulnerable but hardy. It’s the seven million square miles north of the Earth’s 66th parallel where the sun doesn’t set on midsummer eve or rise on the winter solstice. It’s an ocean ringed by the coasts of eight countries.

Reading the snow
It’s a frigid March morning outside the Environmental Data Center, one of the high-tech trailers on the 30-acre campus of the field station. Van Dam is packing for a day of measuring the snowpack. She loads her tools onto a utility sled. They include an ultra-precise ruler, a coring column, a notebook and a pencil (because pens can get temperamental in these temperatures). She secures it all with bungee cords. She steps into cross country skis, reaches down to the sled’s rope, lifts it up and clicks the harness around her waist. Poles in hand, she muscles off, her purple shadow leading her into the white expanse, skis squeaking against the snow.

Today’s work takes Van Dam a mile and a half from camp to what she calls vegetation phenology plots, designated spots where she monitors the environment through the seasons. In winter, she measures the snow, including its depth, density, and liquid water content. Researchers from all over the world with projects at the station can use the data Van Dam gathers to put their own findings into context.

With a tool called a Federal corer, Brie Van Dam samples snow cores.

This kind of routine information gathering is “vitally important to understanding the behavior of the climate system,” writes Henry Pollack, a University of Michigan emeritus professor of earth and environmental sciences in his climate history and cautionary tale, A World Without Ice. “But this type of scientific work is not glamorous.”

When Van Dam and her sled arrive at the first sampling site, she throws a down jacket on top of her other layers. She won’t be as active here as she was on her commute, and temperatures are in the teens. A warm winter is relative here.

Van Dam begins her more rigorous reading by measuring how deep the snow is. She dips the scientific ruler into the snowpack at 50 different points and records the millimeter markings in a journal. Moving on to density measurements, she unpacks a hollow metal tube with a T-shaped grip called a Federal corer. She drives it in, twists it, and lifts out a snow plug, and she pours the contents into a plastic bag. She gathers 20 cores at this location.

Van Dam gears up and heads over to the frozen Toolik Lake, just south of the first sample site. She measures more snow there. And when she’s done, about three hours after she had left the station, she loads 25 bags of snow onto the sled, attaches the harness, and swishes her skis across the solid lake surface to tow it all to the data center. When she gets there, Van Dam weighs each sample, then all of them together. The data she needed from those ice crystals is now in digital form on her computer.

Once she did the math, the snowpack of the station turned out to be a bit shallower than it’s been in recent years. The average depth of about 10.6 inches is the lowest since her office started gathering data in 2012. Granted, that’s not a very long historical record, but one day it will be. Researchers will refer to it as they work to understand what used to be, and how different the climate of the 2010s was from the climate of the decades to come.

In addition to helping scientists identify change in the climate system, ongoing monitoring can also raise red flags that researchers’ projections need to be revised. That’s key as humans plan to adapt.

The road north from Fairbanks is the Dalton Highway. It cuts through the Brooks Range at Atigun Pass about 40 miles south of Toolik Field Station. The narrow, winding road has been featured on the History Channel’s reality show, Ice Road Truckers.

The tipping point and icebergs
One recent revision is the estimate for how quickly the ice will melt. For a long time, scientists have had a broad understanding of how melting snow and ice would exacerbate climate change. What they didn’t realize was that ice dynamics are remarkably complex, and the feedback loops don’t always lead to gradual change.

Three feet of sea level rise by 2100 is the Intergovernmental Panel on Climate Change’s standing estimate. But ice has been turning to water on both poles much more abruptly than climate models predicted. Ongoing monitoring from satellites has brought this to light. And Jeremy Bassis’s work has helped explain why.

For a long time, ocean rise estimates have ignored a phenomenon that accounts for roughly half of the mass lost in ice sheets. That neglected process is iceberg calving, bergs detaching from land-bound ice and glaciers. It’s been left out because it wasn’t clear what factors were involved, explains Bassis, an associate professor of climate and space sciences and engineering at the University of Michigan.

On a frigid March day, Brie Van Dam swaps a sensor
at the Toolik Field Station weather station.

Bassis has identified the physics at the heart of iceberg calving. Now researchers are relying on his equations to more accurately simulate how soon we can expect the oceans to lap at our coastal roads and porches. Newer estimates say three feet this century is an unlikely minimum. A better bet is twice that – 6 feet in the next 85 years followed by a foot per decade. Compare that to the current pace of about an inch per decade, a pace that’s already causing Miami Beach to spend up to $500 million on a network of walls, raised roads and pumps to fight periodic flooding at high tides.

“I think the big surprise for those of us who study ice is that it turns out we’re talking about shorter time scales to make significant changes,” Bassis says. “We used to think on the order of 1,000 years. Now the estimate is within centuries, but we can’t rule out decades.”

Peril in permafrost
It’s true both above and below ground. Although the dirt at Toolik Field Station is covered with snow today, researchers – supported by Van Dam – are examining how the soils are reacting and contributing.

In a hooded parka and thick cargo pants, Van Dam kneels by the station’s weather sensors. She needs to replace some equipment, and it’s buried in snow. Her task is to swap out an electrical box and two ultraviolet light sensors as well as the wires that connect them through a protective pipe, which is also buried. Nothing’s broken. She just has to send it all to the manufacturer to get it calibrated periodically.

With a shovel, Van Dam carefully cuts into the snowpack around the electrical box. Then she hoists up blocks of frozen snow and tosses them behind her. “I don’t want to just dig it all out with the shovel,” she explains, leaning shoulder-deep into the drift. “I have to make sure I don’t cut any wires.”

The weather station does a lot more than tell the locals how cold it is. The ultraviolet sensors, for example, are helping U-M researchers study how sunlight affects permafrost, a thick layer of frozen soil and plant matter under the snow Van Dam is excavating.

Snow must be carefully removed from around an electrical box.

Permafrost comprises about a fifth of Earth’s land area. Guess what: It’s also thawing much faster than scientists expected. Not only is this a problem for the infrastructure on top – think oil pipelines, roads, and homes – it’s another global warming consequence that leads to more of the same.

The icebound plants, which were covered by dirt at the pace of about a meter per millennium, are stores of carbon. When they finally defrost, microbes in the soil will break them down. Their decomposition will release greenhouse gases -- a lot of them.

The Arctic’s permafrost today holds more than twice as much carbon as our atmosphere already contains, says Rose Cory, an assistant professor in the University of Michigan Department of Earth and Environmental Sciences who leads the project using the UV sensors. She is studying the role sunlight plays in how organic carbon decomposes.

Depending on how quickly that carbon is released, it could have a big warming impact. At the same time, policymakers base carbon dioxide limits on climate models that don’t take permafrost thawing into account at all. “Only recently have we gotten an estimate of how much carbon there is in permafrost. The knowledge hasn’t been incorporated yet,” says Ellen Dorrepaal, a plant ecologist at Umeå University in Sweden whose project Van Dam has also assisted with.

New studies have called attention to this. Thawing permafrost is projected to become a significant source of carbon in the atmosphere by 2100.

Standing way back
“We think of the Earth as a system, as this big complex system. The Arctic is one component of that system,” Van Dam says. “And all of us who’ve learned a bit about engineering understand that in general you can’t change one component of a system without having an impact on the entire system.” That’s especially true when that changed component kicks off self-reinforcing loops, feedback cycles that knock the entire system out of equilibrium.

“It’s not just climate change. We’re having an impact on our water, air, and wilderness preservation,” Van Dam says. “All these things are related and extremely important. That gives me a great sense of responsibility to use my training in engineering and sciences to try and have a positive impact, not a negative one… And sometimes that sounds like BS, but most of the time I feel like it’s important to at least try.”

 

This first ran in The Michigan Engineer publsihed by the University of Michigan College of Engineering


Progressive Engineer
Editor: Tom Gibson
2820 Mexico Rd., Milton, PA 17847
570-713-4812 * tom@progressiveengineer.com
© Progressive Engineer